
In 1999 IEEE Symposium on Visual Languages
Tokyo, Japan, pp. 111-118

Visual Music in a Visual Programming Language

Fred Collopy
Case Western Reserve University

flc2@po.cwru.edu

Robert M. Fuhrer
IBM Watson Research Center

rfuhrer@watson.ibm.com

David Jameson
DigiPortal, Inc.

Abstract
Sonnet was designed as a visual language for

implementing real-time processes. Early design and
development of behavioral components has largely
focused on the domain of music programming. However,
Sonnet’s architecture is well suited to expressing many
kinds of real-time activities. In particular, Sonnet is easily
extended with new kinds of data types and behavioral
components.

We have developed a collection of visual output
components for Sonnet, referred to collectively as
Sonnet+Imager. Its design embodies aesthetically
grounded representations of color, form, and rhythm, as
well as dynamics for each. Moreover, its value is
enhanced by a flexible, modular architecture that treats
these graphic entities and operations as first-class
objects.

1. Introduction

There is growing interest in the design of instruments
to play graphics in the way that musicians play sound.
Such visual instruments could assume a wide variety of
forms and functions. Indeed, there is no reason to expect
less variety than there is among musical instruments.
When the visual instruments are computer-based, we refer
to them as imagers. The pieces that are produced using
them we refer to as lumia.1

Interest in instruments that could integrate graphics
with music is not new. In the early 18th century Louis-
Bertrand Castel produced his clavecin oculaire, a light
organ inspired by Newton’s work on color theory. Since,
there have been numerous experiments by painters,
composers and film-makers. At the beginning of this
century, the physicist Albert Michelson wrote: “so
strongly do these color phenomena appeal to me that I
venture to predict that in the not very distant future there
may be a color art analogous to the art of sound--a color
music [9]”.

Around the same time, composers and filmmakers
experimented with, and invented the elements of, such an
art. Among the interesting developments were those of
members of the Bauhaus, where Wassily Kandinsky and

1 This term was suggested by Thomas Wilfred in 1947 ([13]).

Paul Klee speculated on similarities between music and
painting and Moholy-Nagy built kinetic sculptures to
explore light in motion. In the United States, modern
artists Morgan Russell and Stanton Macdonald-Wright
built kinetic light machines, which they saw as a natural
extension of their interest in color and movement. Film-
makers including Oskar Fischinger, John and James
Whitney, Mary Ellen Bute, and Harry Smith explored
some of the same issues in abstract films.

Powerful graphic computers, MIDI, and high-
bandwidth distribution media have led to an increased
interest in computer-based graphic instruments. Scott
Draves’ Bomb, Mark Dank’s GEM, Sydney Fels, et al.’s
MusiKalscope, Sandy Cohen’s Bindhu, and Greg
Jalbert’s Bliss Paint represent modern attempts to
integrate graphics and music.2 These and similar
programs each implements some aesthetic model that
characterizes it.

Any instrument imposes certain features of an
aesthetic on its users. One cannot do with a trumpet
precisely what one can with a piano. One cannot achieve
in oils the effects that can be produced easily using
watercolors. Thus, an instrument’s design both limits
expression and favors particular types of expression.
Instrument designers must identify which choices are
passed to the player. Choices provide the potential for
expressiveness, though generally at the cost of added
complexity. In other words, a balance must be achieved.
When expressive potential is enhanced, and the resulting
complexity is not too burdensome, the instrument
succeeds.

With Imager we have designed an environment in
which a variety of graphic instruments can be built.
Details about particular aesthetics and range of
expressiveness are left to a circuit designer. This
decoupling of aesthetic choices from the underlying
rendering engine can be used to hide some complexity
from the player. Nevertheless, we cannot shirk
responsibility for having made certain aesthetic choices.

The architecture described in this paper builds upon
ideas embodied in a previous version of Imager that was
constructed by the first author. That version runs under
MAX on Macintosh, and is largely implemented as a
single monolithic object. Nonetheless, it is capable of

2 URLs for these and similar developments can be found at
http://imagers.cwru.edu

producing a significant variety of visuals, as illustrated in
several color images located at http://imagers.cwru.edu.
One of these is reproduced in black and white as Figure 1.
That version also serves as a baseline for the aesthetic
quality, variety of form, and range of expressiveness of
the new version.

However, its monolithic design has several
shortcomings. First, it is not easily extended with new
capabilities (e.g., new kinds of forms, motions, and other
dynamic behavior). This problem stems in part from the
fact that the design does not incorporate a modular
architecture that encourages the development of reusable
components. Second, several of its features force hard-
coded constraints on the number and behavior of various
kinds of objects.

The version presently under construction represents an
effort to overcome these limitations. In particular, our
new design focuses on: 1) devising a more coherent,
modular and robust architecture for building alternative
instruments, and 2) providing the artist with a more useful
environment by exposing key aesthetic properties in the
form of intuitive and powerful controls.

The remainder of the paper is structured as follows.
First, we discuss the critical role of visual aesthetics in
devising an architecture for producing visual music. Then,
we briefly introduce the Sonnet programming
environment, upon which Imager is built. In Section 4 we
provide a detailed description of our architecture. Some
extensions that aid in realizing complex compositions are
briefly presented in Section 5. Section 6 discusses how
Sonnet+Imager differs from other dynamic visual
generation systems. Finally, we briefly identify some
future directions and make some concluding remarks.

2. The role of visual aesthetics in defining an
architecture

Many approaches can be taken to devising an aesthetic
for visual experience. One that has a close historical link
with efforts to integrate visual and sonic experiences is
the constructivist aesthetic employed by such modern
artists as Kandinsky, Klee, Max Bill, and Karl Gerstner.
For them and other modern artists, form and color
assumed preeminent roles in expressiveness. Form was
built up from simple elements, such as points, lines,
planes, angles, and conic sections. Color was of interest in
its own right, not merely as a way of rendering objects in
the world.

Given that Imager is intended to deal with color and
form in time, it is necessary to add a third element to
describe changes in these two. In 1914, the painter
Leopold Survage wrote about a new visual art in time, an
art of “colored rhythm and of rhythmic color ([11], p.
36).” He believed that colored visual form could play a
role analogous to that of sound in music and that these

forms could be described by three factors: color, the
visual form proper, and rhythm. So, we add this third
element to the constructivists’ notions of color and form.
Through rhythm, graphics and music can become linked,
compositionally and improvisationally. These three
elements (form, color and rhythm) completely describe
the space of dynamic visuals.

For each of these three domains, color, form, and
rhythm, it is necessary to make some choices about how
composers and players will control them. In effect, one
needs to decide what knobs will be available. In making
these decisions, we have been guided by aesthetic
considerations wherever possible. Our choice of the hue,
saturation, and value (HSV) color model serves as an
illustration.

Hue is the principal way in which one color is
distinguished from another. Describing and managing
hues is generally taken to be the central problem for color
theory. Indeed, the very language we use to denote colors
is associated primarily with their hues. A hue is denoted
by its angle around a color wheel, for example, red at 0°,
yellow at 60°, green at 120°, blue at 240°, and purple at
300°. In a well-behaved color wheel, complementary
colors would appear at 180°-opposite positions.

Saturation describes how pure a particular hue is. It is
also referred to as the intensity, strength, or chroma of a
color. A particular hue becomes less saturated by mixing
gray with it. Reducing saturation at a constant value has
the effect of adding white pigment, producing what artists
call tints.

Value is the quality that differentiates a light color
from a dark one. It is also referred to as lightness. A
particular color moves toward black by a reduction in its
value. Low valued colors are less visible than higher
valued ones. Decreasing value while leaving saturation
alone has the effect of adding black pigment, producing
what are referred to as different shades. Finally, what

Figure 1. Single frame from a visual performance
generated by Imager under MAX

http://www.imagers.cwru.edu/

artists refer to as tones can be created by decreasing both
saturation and value. There is substantial literature that
uses these concepts to describe art history and technique.

Decisions about Imager’s color model were, in short,
driven by artistic considerations. The choice of the right
color model makes achieving certain aesthetic choices,
such as surface textures, lighting effects, and perspective,
much easier. We have chosen the hue, saturation, value
(HSV) color model because those concepts and the
related concepts of tint, tone, and shade have artistic
meaning. We have taken a similar approach to the design
of Imager’s other components.

The design of Sonnet, however, is such that a choice of
a particular model does not preclude the use of alternative
models. For example, a lumianist could use components
to transform to and from RGB or CYMK space.

3. The Sonnet Environment

With the design of Imager, we are interested in
providing artists with the ability to define instruments that
can be used to play with color and form as musicians play
with sounds. Artists will wish to bring ideas and forms of
their own to this process. Enabling that is achieved by
embedding Imager’s facilities in a programming
environment.

Sonnet was originally designed as a visual
environment for associating runtime actions with running
programs. It has since evolved into a visual programming
language for the rapid development of real-time
applications [6]. Sonnet uses a circuit metaphor, and
embodies event-flow semantics. Sonnet behavior is
expressed in two forms: as primitive “components”, and
as “circuits”, which are interconnections of components.
We often refer to Sonnet programs and Sonnet circuits
interchangeably. The programming activity in Sonnet
consists in constructing different arrangements of
components into circuits that perform some computation.

Components are entities that have 1) a set of strongly-
typed input and output “ports” through which data
packets flow, and 2) an Execute() method. An input
port may be designated a “trigger”; it then causes the
Execute() method to be invoked whenever a data
packet arrives on that input.

As shown in Figure 2, components are interconnected
using “wires” which attach one output port to one or more
input ports. It is permissible for a component to have no
inputs or to have no outputs (as is often the case with
interface components).

A circuit can be collapsed into a single component,
known as a “chip”, and used in the same manner as a
primitive component. Chips allow the designer to
structure Sonnet programs hierarchically.

Sonnet is a strongly typed language. That is, all ports
accept or produce a well-defined type of data packet.

Sonnet normally disallows the connection of ports of
incompatible types, to ensure type safety. At present, each
component’s implementation is trusted to conform to its
declared type signature.

Data packet types are arranged in a hierarchy. Thus,
each port is compatible with its specified type and all of
that type’s ancestors in the hierarchy. At the root of the
hierarchy is the “Generic” type, which is compatible with
all types.

Sonnet is very modular, a fact which manifests in
several ways. First, everything in Sonnet is represented by
a software object. Data exists as quanta known as
“packets”. Components are also objects that support a
certain set of pre-defined interfaces.

Second, the key language semantics are primarily
defined by a replaceable module called the “semantic
policy module”. Thus, although the standard module
implements event-flow semantics, it is a straightforward
matter to replace this with one that implements pure data
flow semantics.

Third, the scheduler is also a replaceable module.
Currently, we have implemented simple round-robin
scheduling. However, we recognize that specific real-time
applications require other algorithms, such as rate-
monotonic, earliest deadline first, best effort, and so forth.
We have therefore designed in the appropriate hooks for
other algorithms.

Finally, the Sonnet execution engine is defined and
implemented as a server. As a result, the GUI may be
replaced, or may run on a different machine. In fact, no
GUI need exist; the engine can run “headless”.

The Sonnet environment supplies a basic set of
components for control, logic, and mathematics, and for
string, list, and matrix manipulation. A set of MIDI I/O
components is also included, so that Sonnet programs
may be written that produce and respond in real-time to
MIDI events. Additional component sets include TCP/IP
communication, file I/O, and GUI controls (pushbuttons,
checkboxes, sliders, and so on).

Sonnet is easily extended by adding new component
types and/or data packet types. No data types or
component types are treated specially by the Sonnet
infrastructure (with the exception of chip I/O ports).

Figure 2. A program expressed as a Sonnet circuit

Components are implemented as objects that support a
small number of standard interfaces. Most interfaces are
supported by base classes, so that essentially all that a
component writer needs to supply is an appropriate
Execute() method.

Likewise, data packets are implemented as objects that
support a simple, standard interface. Beyond this, data
packets typically support at least one additional interface
to grant access to the particular kind of data that the
packet holds.

4. Visual Compositions in Sonnet+Imager

Visual compositions in Sonnet+Imager have four
major components: visual objects, rhythm, interaction,
and orchestration. Each of these components builds on the
previous one to provide larger-scale compositional
elements. The components are treated in the four
subsequent sections.

4.1. Visual objects: form and color

In the aesthetic model we have chosen, the abstract
elements of mathematics are also the formal elements of
art. In his book Point and Line to Plane, for example,
Kandinsky established such elements as points, lines, and
planes as more than tools to represent other objects.
Instead, forms became the content of his art, and that of
the modern artists who followed [7]. He, Klee [8],
Gerstner [5], and others wrote extensively about how
these simple elements can be combined and juxtaposed to
represent such abstract ideas as causality, tension, and
growth. The modern artists’ basic strategy of constructing
works from simple elements is well-suited to computer-
based art.

The choice of a model for defining and representing
form is one of the most fundamental that must be faced in
the design of a graphic instrument. Some designers have
elected to base instruments on a single family of forms,
such as kaleidoscopic imagery [4]. Others have provided
a direct mapping of certain musical parameters onto
visual ones. Sonovision, for example, related the
frequency and size of an ellipse to the music’s frequency
and loudness respectively [12]. Some systems simply
expose the forms provided by the underlying computer
graphics toolkit, such as QuickDraw or OpenGL, leaving
it to the composer to build up higher-level forms. Our
approach calls for building a vocabulary from the simple
geometric elements of abstract art. Interfaces are provided
to critical parameters, such as the number of sides for
polygons, or the eccentricity for conic sections. Functions
and envelopes can be applied to these parameters.
Mappings between these parameters and musical events
are then defined at the time of composition or

performance. Given Sonnet’s structure, other aesthetics
could replace and extend the ones we have provided.

Three foundation classes of forms that Imager provides
are regular polygons, irregular polygons, and conic
sections. Other classes, such as string art, fractals, and
ambient forms, can (and will) be added in modular
fashion. This is thought to be one of the ways in which
visual instruments can be personalized and customized.
Artists can make the foundation elements of whatever
aesthetic they wish to work with first-class elements in
the environment. Their newly created types can inherit the
color, movement, and other methods that have been
defined to apply to our basic classes of forms.

We have already described the basic color model that
Imager uses. Other issues arise in controlling color. In
particular, it is necessary to provide high-level constructs
that make it easy to use color to achieve tensions,
resolutions, harmonies, and similar affects. Color can then
be used to connect musical and visual rhythms.

Once we have a color model that corresponds well to
the way the lumianist thinks about color, we can define
interfaces to manage it. To do this effectively, we must
identify appropriate manners in which the instrument
permits the lumianist to control an item’s color (beyond
directly specifying its hue, saturation, and value).

One kind of control was suggested by the work of
color theorists. Ogden Rood, for example, suggested that
harmonious color combinations are found in pairs
separated by 90 degrees on the color wheel, as well as by
triads of colors that are 120 degrees apart [10]. Joseph
Albers noted that strong complementary colors (those
separated by 180 degrees) produce after-images and
vibrations [1]. Faber Birren observed that people find
pleasure in harmonies of color based on analogy (adjacent
hues) and on extreme contrast (complementary hues) [2].
When adjacent colors are used, the effect is to produce
color schemes that are predominantly warm or cool in
feeling. When complementary colors are used, the result
is more startling and compelling. For color to be played
improvisationally, it is useful to be able to move rapidly
and easily from dissonant to harmonious, or from warm to
cool, motifs.

Sonnet+Imager facilitates manipulating objects’ colors
in just such a manner. For example, a line’s and a ring’s
colors can be controlled by a Sonnet circuit so as to
maintain a complementary relationship. When the ring’s
hue is changed from red to yellow, the line’s hue goes
from blue to purple.

In fact, Sonnet+Imager allows for maintaining many
kinds of relationships among visual forms. The circuit
structure described above can also be applied to shape,
thickness, and texture. These interactions form a basis for
compositional structure. As a result, our architecture
supports both establishing and controlling the structure
and mood of visual compositions.

4.2. Rhythm: navigating parameter spaces

Because Imager is intended to facilitate the creation of
dynamic graphic images that interact with musical
performances, the temporal dimension plays an important
role in its architecture.

Rhythms can be produced through changes in any of
the dimensions (e.g., color, shape, location, and
orientation). Considerations of rhythm pervade Imager’s
design. Manipulation of scale, location, and orientation
are all ways in which objects become animated. Similarly,
changes in the colors, textures, pen shapes, and other
characteristics of objects can define rhythms. In short,
dynamic changes in any attribute of a visual object
contribute to the rhythm of the visual performance.

Our model of visual rhythm has three components:
where, when and what. By decomposing visual rhythm
into these three components, we gain significant
flexibility and opportunity for reuse.

The first component, where, refers generically to a
path through N-dimensional space for any collection of N
visual parameters. Any path through such a space can
form the basis of a visual rhythm. Paths need not be
smooth or continuous in the mathematical sense. Rather, a
path is represented by an arbitrary mapping from real
numbers on the closed interval [0, 1] onto points in N-
space.

This model constitutes a very general and powerful
view of rhythm. For example, the visual parameters hue,
thickness, and x-coordinate form one such 3-dimensional
space. The individual dimensions need not be real-valued;
strings and symbol sets also define valid dimensions.

In practice, many interesting traversals of N-space can
be implemented using a set of N distinct functions. E.g.:

)cos(),sin(,)(,, 321 ttkttfzzz =>=<
describes a path through 3-space in which the x
coordinate follows a linear path, while the y and z
coordinates follow phase-inverted sinusoidal paths.

The second component of rhythm, “when,” associates
temporal information with the path, thereby specifying
dynamics. In particular, a distinct function maps a portion
of the temporal dimension onto the parameter of the path-
mapping function mentioned above. A trivial example
linearly maps the time interval [5, 10] onto the parameter
domain [0, 1]. A more interesting example maps the time
interval [5, 10] onto [0,1] using the quadratic function

20333.7.67.2)(xxxft −+−==
This has the effect of dilating time so that it flows more
quickly in the early portion of the time interval than in the
latter portion, as shown in Figure 3.

Although the most obvious temporal mappings are
monotonic and smooth, mappings need not be. For
example, a sinusoidal temporal mapping defines cyclic

motion along an arbitrary path. That is, the traversal
moves back and forth along the entire path.

Finally, the “what” component associates the dynamic
path with the concrete parameters to be affected. That is,
the above 3-D path can be associated with hue, saturation,
and value, or alternatively with hue, thickness, and x-
coordinate. By decoupling the path’s shape from the
parameters that it affects, interesting paths can be applied
to different sets of parameter, without modification.

This micro-architecture provides considerable
potential for reuse, an essential aspect of any toolbox.
Any particular path through N-space is trivially
substituted for any other, given that the number and types
of the dimensions match. Thus, a sinusoidal path in 2-
space can be used to affect hue and saturation, or x- and
y-coordinates, and so on. Likewise, one can vary the rate
of traversal of a path by substituting another temporal
component. The architecture is illustrated in Figure 4.

Because our objective is to create a platform for
devising a variety of dynamic and interactive visual
instruments, it is important to have ‘knobs’ that are at
once simple to understand and use, and powerful. We
achieve this by expressing all of the above functions using
the same construct -- functors.

4.2.1. Functors. Functors are software objects that
encapsulate arbitrary functions. A functor’s clients need
know only 1) its domain and range, and 2) how to ask it
to compute its value given a value in that domain. In this
manner, the specific function embedded in the functor
(say, a linear curve, piecewise-linear envelope, or sine
wave) is hidden.

Figure 4. A modular architecture for realizing rhythm

Figure 3. Temporal mapping realizing dilation

Path
Functor

("where")

Temporal
Functor
("when")

Parameter
Selection
("what")

x
time

t
<z1,...,zN>

Apply
to Visual
Object(s)

0

0.2

0.4

0.6

0.8

1

5 6 7 8 9 10

More specifically, a class of functors is represented at
the lowest level by a trivial interface with a single method
to evaluate the underlying function. An example appears
in Figure 5, roughly in C++ syntax. The functor shown
embodies a 1-dimensional path, since it maps the real
numbers onto the real numbers.

A particular functor simply needs to support the
appropriate interface (such as OneArgFunctor above),
a to

m
l
F

c
b
e

r

p

p

f

l
w

c
F
c
i
p
s

t
s

f

4.2.2. The Functor Toolbox. The Imager toolbox
furnishes a set of simple functors, including one-
parameter functors such as polynomial (linear, quadratic,
etc.), transcendental (sine, cosine), as well as various
algebraic two-parameter functors, used for combining
functors in intuitive ways.

Perhaps the most flexible type of functor is the
envelope functor. This type of functor encapsulates a set
of samples of a function. Its appeal derives in part from
the fact that the function can be drawn graphically (in
“freehand”), without needing to know its precise
mathematical form. It can be particularly effective in
describing motion trajectories in 2-space: the artist simply
draws the desired path.

4.2.3. Visual Representation of Functors in
Sonnet+Imager. In the context of Sonnet’s visual
language, functors appear in three forms: as individual
primitive components, as circuits or chips, and as packets.

This representation has two advantages. First, the
circuit metaphor employed by Sonnet allows functors to
be “hooked up” to suitable clients using simple “wires”.
No code needs to be written. Type safety is guaranteed by
Sonnet’s normal type-checking mechanism.

Second, more elaborate functors can be composed

interface OneArgFunctor {
 double Evaluate(double t);
};

Figure 5. A simple interface defining a class
of functors
nd to support interfaces that provide access

class LinearFunctor: OneArgFunctor {
public:
 void SetOffset(double k0);
 void SetSlope(double k1);
};

Figure 6. An interface that provides access to both
a linear functor’s parameters and its evaluation
anipulate the function’s definition. An example of a
inear functor that uses OneArgFunctor appears in
igure 6.

The decoupling of client from function has two
onsequences. First, functors over the same domain can
e interchanged without affecting a compatible client. For
xample, given a linear functor mapping real numbers to

eal numbers (e.g. tkktf 10)(+=), we can change the

articular linear function in use by manipulating the

arameters (in this case, 0k and 1k) that define the

unction. Alternatively, a quadratic functor (such as
2

210)(tktkktf ++=) can be substituted for the

inear functor. In both cases, the client continues to work
ithout modification.

Second, a given functor can be used with any
ompatible client. For example, a functor embodying a
ermat spiral over 2D space can be used by any client that
onforms to the evaluation interface. The client is free to
nterpret the function as navigating any pair of
arameters, such as x and y-coordinates, hue and
aturation, or saturation and x-coordinate.

Functors can be constructed to encapsulate functions
hat compute non-numeric values, such as strings, discrete
ymbols, visual objects, and so on.

It is also possible to construct functors that embody
unctions of multiple arguments, such as

2
11021),(tktkttf += .

from simpler ones by wiring functors together into
circuits. For example, a “wobbling spiral” path can be
constructed by combining two primitive functors (a
wobble functor, and a Fermat’s spiral functor) with an
additive composition functor, as shown in Figure 7. The
packet produced at the adder’s output is itself a functor,
which is called by an additional component at the
appropriate times to produce its result.

This circuit can now be collapsed into a chip, and
reused as a single component.

4.3. Interaction: input and synchronization

Imager’s improvisational performance capability relies
on the ability to accomplish two things based on a
performer’s input: 1) modulating visual parameters, and
2) triggering visual rhythms. Likewise, a significant
aspect of any integrated musical and visual composition

Fermat's
spiral

Wobblemagni-
tude

"wobbly
spiral"

tight-
ness

Figure 7. Compound trajectory built from simple
components

lies in the interplay between the rhythms in the two
domains. The key to establishing this interplay is the
ability to synchronize musical and visual rhythms.

Sonnet furnishes an ideal platform upon which to build
and combine the necessary components. In particular,
interface components can be constructed (e.g. for MIDI,
data glove, dance suits) to allow data flows from external
sources to modulate visual parameters. Likewise, because
data packets can trigger component execution, these same
interface components act to trigger Imager visuals or to
synchronize activity between Imager and external sources
(e.g. of MIDI music content).

4.4. Orchestration

The orchestration of visual (and musical) segments and
modalities is central to organizing a coherent, structured
performance from basic visual forms and rhythms .

Satisfying these needs generally requires real-time
facilities. In particular, where visual rhythms are triggered
sympathetically by musical events, real-time support is
necessary for timely response. Orchestrating segments of
the visual performance, on the other hand, requires both
high-level and fine-grained sequencing support (e.g.,
“show this visual five seconds into the second section of
the piece”). Sequencing at both of these levels is
accomplished using Sonnet’s event flow and real-time
support to create and propagate events that trigger activity
at the appropriate times.

5. Tools for Complex Compositions

Sonnet+Imager offers three additional tools for dealing
with complex compositions. The first two of these aid the
navigation of long compositions; the last allows artists to
construct performances containing arbitrarily complex
visuals, regardless of their computational complexity.

5.1. Navigating long compositions

Sonnet+Imager offers two techniques for navigating
longer compositions: variable-speed fast-forward, and
random access (seek). This is accomplished by triggering
Imager’s display refresh from a virtual clock, whose rate
can be controlled using a Sonnet+Imager component.
Under ordinary circumstances (e.g. during performances),
the virtual clock runs in real-time. During editing, the
clock can be sped up (and the normal retrace interlocking
bypassed) to effect fast-forward. If the rendering is
already running at full speed, then the clock can be made
to advance virtual time in larger increments.

The second feature, seek, is trivially implemented by
setting the Imager virtual clock to the desired time
(relative to the beginning of the performance).

Our current design for the seek feature poses a minor
problem, however. Specifically, we have found that a
significant class of visuals derives value from “artifacts”
that are produced as moving visual objects interact in
various ways, as shown in Figure 8. These artifacts are
critically dependent on the history of pixel-level drawing
operations used to render the visual objects. Thus, moving
directly to a different temporal location elides the
intermediate drawing operations, thus losing the artifacts.
As a result, continuing the performance from that point
will produce somewhat (or perhaps radically) different
results from those achieved when starting from the
beginning of the composition. As of this time, we have no
solution to this problem.

Figure 8. A visual exhibiting textural artifacts

5.2. Rendering computationally demanding
visuals

We anticipate that artists will at times desire visuals
whose computational complexity exceeds that which can
be rendered in real-time with the available processing
power. To cope with this eventuality, we provide a simple
mechanism that allows Sonnet+Imager to render complex
visuals in an off-line (non-real-time) mode, for later
playback.

Specifically, the Imager virtual clock enters a mode in
which it only advances time when the current frame is
finished rendering, no matter how long that takes.
Likewise, the Imager engine enters a mode in which it
records each frame (once fully rendered), along with its
virtual timestamp (typically a single frame’s worth of
time). The resulting performance is a sequence of frames,
suitable for compression by any of the various available
techniques (e.g. QuickTime, MPEG). Note that no other
portion of the architecture needs modification to support
this mechanism.

With this mechanism in place, the artist gains access to
a larger space of visuals, at the expense of the ability to
see the performance in real-time. Obviously, this makes
developing complex performances harder. To compensate

for this, we propose that computationally expensive visual
objects support a “fast rendering mode” that trades image
quality for run-time overhead. More work is needed on
this problem.

If interaction is designed into the performance, clearly
only that portion of the performance that does not rely on
interaction can be rendered off-line. Our system allows
for this circumstance by rendering the static portion of the
performance, and allowing for simultaneous playback of
the “recorded” performance and arbitrary additional
visual material in real-time.

6. Relationship to other efforts

Instruments for playing graphics with music can be
grouped into two categories. The first consists of what
might be termed image sequencers. These programs
typically play back sequences of images that have been
created elsewhere, sometimes providing transitional and
other effects. X<>pose and Director are examples of such
programs.

The second category is that of image generators. These
programs permit the player to create some kind of
graphic, sometimes specifically to accompany music.
Bomb, GEM, MusiKalscope and BlissPaint are examples
of this type of program.

Imager is designed to function in both categories. In
this section we briefly consider how it differs from some
of these other programs.

Bomb and MusiKalscope represent good illustrations
of programs that implement a particular graphic algorithm
or family of algorithms. Bomb’s algorithms, for example,
are based primarily on ideas from artificial life research.
MusiKalscope’s are based on kaleidoscopic imagery. The
knobs that these programs provide to the player directly
reflect the structure of their algorithms. Although these
controls can be used to produce some exciting and useful
effects, the models are not constructive, and thereby
extensible, in the sense that Imager’s graphic model is.
Moreover, because of the close association between the
controls and the algorithmic structures, the controls do not
map readily into the kinds of understandable aesthetic
choices that artists are used to making.

BlissPaint provides a library of animated shapes and
patterns, called scribblers, and permits you to determine
where these shapes are drawn using distributors. A
sequencer allows you to script the scribblers, and a color
synthesizer can be used to control them in real-time.
Though BlissPaint provides a substantial set of primitives,
it does not provide a programming language with which
to mix and arrange them. Where BlissPaint uses fairly
static arrangements of coarse-grained primitives (that is,
each encapsulates relatively large amounts of behavior),
Imager provides more fine-grained primitive elements
and a powerful programming environment that enables
the artist to combine and control them.

GEM [3], like Imager, is embedded in a real-time,
visual programming environment (Miller Puckette’s Pd).
To first order, GEM’s architecture simply exposes the
various primitives present in OpenGL. In contrast,
Imager’s primitives embody models derived from the
work of painters and graphic artists. Therefore, we
believe it will be easier to produce non-trivial works of
high artistic quality using Imager.

7. Conclusions

We have described an architecture that integrates
Imager into Sonnet, resulting in a system that is capable
of generating a wide variety of dynamic visuals. Further,
our architecture is based on strong aesthetic principles,
which makes our system a powerful tool in the hands of
artists and musicians.

The value of this very flexible and rich framework
would clearly be augmented by a user-interface that is
more imitative of painting and similar modes of
interaction than the circuit metaphor. This is an important
area for future research. However, we believe that, unlike
other competing systems, Sonnet+Imager’s modular
architecture provides a platform that is uniquely suited to
achieving this long-standing objective.

References
[1] Albers, J., Interaction of Color, New Haven: Yale University
Press, 1975.
[2] Birren, F., Principles of Color, Atglen, PA: Schiffer
Publishing Ltd., 1987.
[3] Danks, M. “The Graphics Environment for MAX,”
International Computer Music Conference, 1996, 67-70.
[4] Fels, S., K. Nishimoto and K. Mase, “MusiKalscope: A
Graphical Musical Instrument,” IEEE Multimedia, July-Sept
1998, 26-35.
[5] Gerstner, K., The Forms of Color: The Interaction of Visual
Elements, Cambridge, MA: MIT Press, 1986.
[6] Jameson, D., “Building Real-Time Music Tools Visually
with Sonnet,” 2nd IEEE Real-Time Technology and
Applications Symposium, Boston MA, 1996.
[7] Kandinsky, W., Point and Line to Plane, 1926 in K. C.
Lindsay and P. Vergo [eds.], Kandinsky: Complete Writings on
Art, New York: DaCapo Press, 1994, 527-699.
[8] Klee, P., The Thinking Eye, Jurg Spiller [ed.], New York:
George Wittenborn, 1981.
[9] Michelson, A. A., Light Waves and Their Uses, 1899.
[10] Rood, O., Modern Chromatics With Application to Art and
Industry, New York: D. Appleton and Company, 1897.
[11] Russet, R. and C. Starr, Experimental Animation: Origins
of a New Art (2nd edition), New York: DaCapo Press, 1988.
[12] Wagler, S. R., “Sonovision: A Visual Display of Sound,” in
F. J. Malina [ed.], Kinetic Art: Theory and practice, New York:
Dover Publication, 1974, 162-164.
[13] Wilfred, Thomas, “Light and the Artist,” in Journal of
Aesthetics and Art Criticism, (V) June 1947, 247-255.

